De Novo Sequencing and Transcriptome Analysis of the Central Nervous System of Mollusc Lymnaea stagnalis by Deep RNA Sequencing
نویسندگان
چکیده
The pond snail Lymnaea stagnalis is among several mollusc species that have been well investigated due to the simplicity of their nervous systems and large identifiable neurons. Nonetheless, despite the continued attention given to the physiological characteristics of its nervous system, the genetic information of the Lymnaea central nervous system (CNS) has not yet been fully explored. The absence of genetic information is a large disadvantage for transcriptome sequencing because it makes transcriptome assembly difficult. We here performed transcriptome sequencing for Lymnaea CNS using an Illumina Genome Analyzer IIx platform and obtained 81.9 M of 100 base pair (bp) single end reads. For de novo assembly, five programs were used: ABySS, Velvet, OASES, Trinity and Rnnotator. Based on a comparison of the assemblies, we chose the Rnnotator dataset for the following blast searches and gene ontology analyses. The present dataset, 116,355 contigs of Lymnaea transcriptome shotgun assembly (TSA), contained longer sequences and was much larger compared to the previously reported Lymnaea expression sequence tag (EST) established by classical Sanger sequencing. The TSA sequences were subjected to blast analyses against several protein databases and Aplysia EST data. The results demonstrated that about 20,000 sequences had significant similarity to the reported sequences using a cutoff value of 1e-6, and showed the lack of molluscan sequences in the public databases. The richness of the present TSA data allowed us to identify a large number of new transcripts in Lymnaea and molluscan species.
منابع مشابه
Clustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملDeep mRNA Sequencing of the Tritonia diomedea Brain Transcriptome Provides Access to Gene Homologues for Neuronal Excitability, Synaptic Transmission and Peptidergic Signalling
BACKGROUND The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. RESULTS We performed I...
متن کاملHypoxia-induced peripheral feedback is required for central respiratory rhythmogenesis in Lymnaea
Aerial respiration in the fresh water mollusc Lymnaea stagnalis is controlled by an identified network of central pattern generating neurons (CPG). The CPG underlying central respiratory rhythmogenesis is comprised of three cells: namely RPeD1, VD4 and IP3I. IP3I and VD4 control expiration and inspiration, respectively, whereas RPeD1 initiates respiratory rhythmogenesis. Both in vivo and in vit...
متن کاملTranscriptome analysis of the freshwater pearl mussel, Hyriopsis cumingii (Lea) using illumina paired-end sequencing to identify genes and markers
The transcriptome of triangle sail mussel Hyriopsis cumingii (Lea) using Illumina paired-end sequencing technology was conducted and analyzed. Equal quantities of total RNA isolated from six tissues, including gonad, hepatopancreas, foot, mantel, gill and adductor muscle, were pooled to construct a cDNA library. A total of 58.09 million clean reads with 98.48 % Q20 bases were generated. Cluster...
متن کاملTranscriptome Analysis of the Octopus vulgaris Central Nervous System
BACKGROUND Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. RESULTS With high-throughput Illumina Solexa sequ...
متن کامل